目前车牌识别所遇到的难点主要体现在三个方面,主要体现在:车牌倾斜,图像噪声,还有车牌模糊。
目前对车牌识别的方法大致可以分为三类,模板匹配,SVM,和深度学习的方法,其中,深度学习的方法用的更加广泛,深度学习上采用车牌识别的方法可分为直接检测算法和间接检测算法。对于车牌识别,有着不同的数据集,我们需要对不同公共数据集进行比较和说明,然后对针对不同的数据集,工作站,精度和时间进行比较,这样才能全面的衡量算法的优势和劣势,然后再对未来研究方向进行展望。 模板匹配: