pytorch关于Tensor的数据类型说明

关于Tensor的数据类型说明

1. 32位浮点型:torch.FloatTensor

a=torch.Tensor( [[2,3],[4,8],[7,9]], )
print "a:",a
print "a.size():",a.size()
print "a.dtype:",a.dtype
 
b=torch.FloatTensor( [[2,3],[4,8],[7,9]] )
print "b:",b
print "b.shape:",b.shape
print "b.dtype:",b.dtype

pytorch关于Tensor的数据类型说明_第1张图片

可以看出 torch.FloatTensor 是32位float类型,并且torch.Tensor默认的数据类型是32位float类型。

2. 64位浮点型:torch.DoubleTensor

b=torch.DoubleTensor( [[2,3],[4,8],[7,9]] )
print "b:",b
print "b.shape:",b.shape
print "b.dtype:",b.dtype

pytorch关于Tensor的数据类型说明_第2张图片

 3. 16位整型:torch.ShortTensor

b=torch.ShortTensor( [[2,3],[4,8],[7,9]] )
print "b:",b
print "b.shape:",b.shape
print "b.dtype:",b.dtype

4.  32位整型:torch.IntTensor

b=torch.IntTensor( [[2,3],[4,8],[7,9]] )
print "b:",b
print "b.shape:",b.shape
print "b.dtype:",b.dtype

5. 64位整型:torch.LongTensor

b=torch.LongTensor( [[2,3],[4,8],[7,9]] )
print "b:",b
print "b.shape:",b.shape
print "b.dtype:",b.dtype

pytorch关于Tensor的数据类型说明_第3张图片

6. 快速创建Tensor

(1) torch.zeros()

a=torch.zeros( size=(4,5),dtype=torch.float32 )
print a
print a.shape
print a.dtype

pytorch关于Tensor的数据类型说明_第4张图片

(2) torch.randn()

a=torch.randn( size=(4,5),dtype=torch.float32 )
print a
print a.shape
print a.dtype

pytorch关于Tensor的数据类型说明_第5张图片

7. Tensor索引方式,参考numpy

8. Tensor和numpy数组转换:

(1) Tensor转numpy,

a=torch.randn( size=(4,5),dtype=torch.float32 )
print a
print a.shape
print a.dtype
 
b= a.numpy()
print b
print b.shape
print b.dtype

pytorch关于Tensor的数据类型说明_第6张图片

(2) numpy转Tensor,

a=np.random.randn(4,3)
print a
print a.shape
print a.dtype
 
b=torch.from_numpy( a )
print b
print b.shape
print b.dtype

pytorch关于Tensor的数据类型说明_第7张图片

9.更改Tensor的数据类型,

a=torch.FloatTensor( (3,2) )
print a
print a.shape
print a.dtype
 
a.int()
print a
print a.shape
print a.dtype

pytorch关于Tensor的数据类型说明_第8张图片

10. GPU加速,如果pytorch支持GPU加速,可以加Tensor放到GPU执行,

if torch.cuda.is_available():
    a_cuda = a.cuda()

pytorch Tensor变形函数

pytorch关于Tensor的数据类型说明_第9张图片

view(), resize(), reshape() 在不改变原tensor数据的情况下修改tensor的形状,前后要求元素总数一致,且前后tensor共享内存

pytorch关于Tensor的数据类型说明_第10张图片

如果想要直接改变Tensor的尺寸,可以使用resize_()的原地操作函数。

在resize_()函数中,如果超过了原Tensor的大小则重新分配内存,多出部分置0,如果小于原Tensor大小则剩余的部分仍然会隐藏保留。

pytorch关于Tensor的数据类型说明_第11张图片

transpose()函数可以将指定的两个维度的元素进行转置,而permute()函数则可以按照给定的维度进行维度变换。

pytorch关于Tensor的数据类型说明_第12张图片

pytorch关于Tensor的数据类型说明_第13张图片

在实际的应用中,经常需要增加或减少Tensor的维度,尤其是维度为1的情况,这时候可以使用squeeze()与unsqueeze()函数,前者用于去除size为1的维度,而后者则是将指定的维度的size变为1。

pytorch关于Tensor的数据类型说明_第14张图片

有时需要采用复制元素的形式来扩展Tensor的维度,这时expand就派上用场了。

expand()函数将size为1的维度复制扩展为指定大小,也可以使用expand_as()函数指定为示例Tensor的维度。

pytorch关于Tensor的数据类型说明_第15张图片

注意:在进行Tensor操作时,有些操作如transpose()、permute()等可能会把Tensor在内存中变得不连续,而有些操作如view()等是需要Tensor内存连续的,这种情况下需要使用contiguous()操作先将内存变为连续的。在PyTorch v0.4版本中增加了reshape()操作,可以看做是Tensor.contiguous().view()

Tensor的排序与取极值

排序函数sort(),选择沿着指定维度进行排序,返回排序后的Tensor及对应的索引位置。

max()与min()函数则是沿着指定维度选择最大与最小元素,返回该元素及对应的索引位置。

pytorch关于Tensor的数据类型说明_第16张图片

pytorch关于Tensor的数据类型说明_第17张图片

Tensor与NumPy转换

Tensor与NumPy可以高效地进行转换,并且转换前后的变量共享内存。在进行PyTorch不支持的操作时,甚至可以曲线救国,将Tensor转换为NumPy类型,操作后再转为Tensor。

pytorch关于Tensor的数据类型说明_第18张图片

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。

你可能感兴趣的