用python实现各种数据结构

快速排序

    def quick_sort(_list):
            if len(_list) < 2:
                return _list
            pivot_index = 0
            pivot = _list(pivot_index)
            left_list = [i for i in _list[:pivot_index] if i < pivot]
            right_list = [i for i in _list[pivot_index:] if i > pivot]
        return quick_sort(left) + [pivot] + quick_sort(right)


选择排序

    def select_sort(seq):
        n = len(seq)
        for i in range(n-1)
        min_idx = i
            for j in range(i+1,n):
                if seq[j] < seq[min_inx]:
                    min_idx = j
            if min_idx != i:
                seq[i], seq[min_idx] = seq[min_idx],seq[i]


插入排序

    def insertion_sort(_list):
        n = len(_list)
        for i in range(1,n):
            value = _list[i]
            pos = i
            while pos > 0 and value < _list[pos - 1]
                _list[pos] = _list[pos - 1]
                pos -= 1
            _list[pos] = value
            print(sql)


归并排序

   

 def merge_sorted_list(_list1,_list2):   #合并有序列表
        len_a, len_b = len(_list1),len(_list2)
        a = b = 0
        sort = []
        while len_a > a and len_b > b:
            if _list1[a] > _list2[b]:
                sort.append(_list2[b])
                b += 1
            else:
                sort.append(_list1[a])
                a += 1
        if len_a > a:
            sort.append(_list1[a:])
        if len_b > b:
            sort.append(_list2[b:])
        return sort

    def merge_sort(_list):
        if len(list1)<2:
            return list1
        else:
            mid = int(len(list1)/2)
            left = mergesort(list1[:mid])
            right = mergesort(list1[mid:])
            return merge_sorted_list(left,right)


堆排序heapq模块

    from heapq import nsmallest
    def heap_sort(_list):
        return nsmallest(len(_list),_list)


    from collections import deque
    class Stack:
        def __init__(self):
            self.s = deque()
        def peek(self):
            p = self.pop()
            self.push(p)
            return p
        def push(self, el):
            self.s.append(el)
        def pop(self):
            return self.pop()


队列

    from collections import deque
    class Queue:
        def __init__(self):
            self.s = deque()
        def push(self, el):
            self.s.append(el)
        def pop(self):
            return self.popleft()


二分查找

    def binary_search(_list,num):
        mid = len(_list)//2
        if len(_list) < 1:
            return Flase
        if num > _list[mid]:
            BinarySearch(_list[mid:],num)
        elif num < _list[mid]:
            BinarySearch(_list[:mid],num)
        else:
            return _list.index(num)

到此这篇关于用python实现各种数据结构的文章就介绍到这了,更多相关python实现各种数据结构内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

你可能感兴趣的