在python3.8下创建虚拟环境

创建虚拟环境安装TensorFlow

python是向上兼容,Python 3.x 不向下兼容。更下一级的子版本,在非生产环境,譬如学习阶段,并不会有太大的区别。类似的,以 Python 3.8 为例子,如,Python 3.8.1 和 Python 3.8.2 或 Python 3.8.3 在学习阶段,基本没感知。但是如果要细究,还是存在一些差异,比如随着python版本的更新,一些库没有同时更新,导致高版本的python没有相应的库。如果想在高版本的python中用这个库,很多文章会让我们降低python的版本,但是怕麻烦的我还是选择创建虚拟环境,相信大家在安装TensorFlow的时候一定都遇到了不少的麻烦(此处安装的是CPU版本,现在跑的代码量使用GPU版本犹如杀鸡用牛刀)
python官网

创建虚拟环境在python3.8下创建虚拟环境_第1张图片

打开Anaconda Navigator,这是一个 用于管理工具包和环境的图形用户界面。
在此可以创建虚拟环境。
在python3.8下创建虚拟环境_第2张图片

可以选择指定的python版本,在这里我选择了3.6的版本,将虚拟环境命名为tf,事实上在anaconda promt 中也可以完成相应操作,
在这里插入图片描述

conda create -n tf python==3.6

和上面在anaconda Navigator进行的操作是效果相同的。

查看python版本对应的TensorFlow版本

在python3.8下创建虚拟环境_第3张图片
这里我安装的是tensorflow-2.1.0
打开anaconda prompt

activate tf
在这里插入图片描述

此时环境由base环境成为了tf环境。
此时可以开始我们的安装过程了

安装TensorFlow

在激活的环境中输入

pip install tensorflow==2.1.0 -i https://mirrors.tuna.tsinghua.edu.cn

在这里我指定了tensorflow的版本,如果未指定,在安装的时候会下载很多个版本,接入清华源是为了下载的速度更快,这个库有大概400多Mb的大小。
在python3.8下创建虚拟环境_第4张图片
在安装的时候会出现很多问题:

  1. 网络不好,因为这个库比较大,可能中途会断线
  2. 下载时会报错,未下载成功某个包,此时只需要pip install 指定的包名,比如scipy==1.4.1 下载失败,重新下载即可。
   pip install scipy==1.4.1

FLowchart流程图

Created with Raphaël 2.3.0 创建虚拟环境 查看TensorFlow对应的版本 安装 结束 yes

测试

安装好后,可以直接在激活环境后的anaconda prompt 中进入python
在这里插入图片描述

import tensorflow as tf
a = tf.zeros(shape=[1,2])
print(a)

中间有一大堆东西,不用管它
在python3.8下创建虚拟环境_第5张图片
运行成功
在这里插入图片描述

参考博客
[1]:https://blogdev.blog.csdn.net/

你可能感兴趣的