python+opencv实现文字颜色识别与标定功能

        最近接了一个比较简单的图像处理的单子,花了一点时间随便写了一下:

 数据集客户没有是自己随便创建的:

python+opencv实现文字颜色识别与标定功能_第1张图片

 程序如下:

"""
    Code creation time:September 11, 2021
    Author:PanBo
    Realize function:It mainly realizes the recognition and calibration of fonts with different colors
"""
import numpy as np
import cv2 as cv
 
font = cv.FONT_HERSHEY_SIMPLEX
lower_red = np.array([0, 120, 120])
hight_red = np.array([10, 255, 255])
#
lower_black = np.array([0, 0, 0])
height_black = np.array([144, 144, 144])
 
lower_yellow = np.array([10, 230, 230])
height_yellow = np.array([35, 255, 255])
 
frame = cv.imread("test.png")
cv.namedWindow("test_image", cv.WINDOW_AUTOSIZE)
cv.imshow('test_image', frame)
 
img_hsv = cv.cvtColor(frame, cv.COLOR_BGR2HSV)
mask_red = cv.inRange(img_hsv, lower_red, hight_red)
mask_black = cv.inRange(img_hsv, lower_black, height_black)
mask_yellow = cv.inRange(img_hsv, lower_yellow, height_yellow)
 
cv.namedWindow("mask_red", cv.WINDOW_AUTOSIZE)
cv.imshow("mask_red", mask_red)
cv.namedWindow("mask_black", cv.WINDOW_AUTOSIZE)
cv.imshow("mask_black", mask_black)
cv.namedWindow("mask_yellow", cv.WINDOW_AUTOSIZE)
cv.imshow("mask_yellow", mask_yellow)
 
kernel = cv.getStructuringElement(cv.MORPH_RECT, (3, 3))
mask_yellow = cv.morphologyEx(mask_yellow, cv.MORPH_OPEN, kernel)
cv.namedWindow("mask_yellow_open", cv.WINDOW_AUTOSIZE)
cv.imshow("mask_yellow_open", mask_yellow)
 
mask_yellow = cv.morphologyEx(mask_yellow, cv.MORPH_CLOSE, kernel)
cv.namedWindow("mask_yellow_close", cv.WINDOW_AUTOSIZE)
cv.imshow("mask_yellow_close", mask_yellow)
 
mask_black = cv.medianBlur(mask_black, 3)
mask_red = cv.medianBlur(mask_red, 3)
mask_yellow = cv.medianBlur(mask_yellow, 3)
# cv.imshow(" ", mask_green)
 
cnts1, hierarchy1 = cv.findContours(mask_black, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_NONE)
cnts2, hierarchy2 = cv.findContours(mask_red, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_NONE)
cnts3, hierarchy3 = cv.findContours(mask_yellow, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_NONE)
 
for cnt in cnts1:
    (x, y, w, h) = cv.boundingRect(cnt)
    cv.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 0), 2)
    cv.putText(frame, 'black', (x, y-5), font, 0.7, (0, 0, 25),2)
for cnt in cnts2:
    (x, y, w, h) = cv.boundingRect(cnt)
    cv.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 255), 2)
    cv.putText(frame, 'red', (x, y - 5), font, 0.7, (0, 0, 255), 2)
 
for cnt in cnts3:
    (x, y, w, h) = cv.boundingRect(cnt)
    cv.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 255), 2)
    cv.putText(frame, 'yellow', (x, y - 5), font, 0.7, (0, 0, 255), 2)
 
cv.namedWindow("output", cv.WINDOW_AUTOSIZE)
cv.imshow("output", frame)
cv.waitKey(0)

首先给定字体颜色的上下阈值,然后提取出红色、黑色以及黄色的字体如下所示:

检测出原始图像中存在的红色字体的为四和五

python+opencv实现文字颜色识别与标定功能_第2张图片

 检车出原始图像中存在的黑色字体是一和大

python+opencv实现文字颜色识别与标定功能_第3张图片

 检测出原始图像中存在黄色字体的是七和九

python+opencv实现文字颜色识别与标定功能_第4张图片

 但是通过yellow字体检测的过程中发现有一些椒盐噪声需要去剔除,因此做了一下中值滤波

但是效果不好有做一个形态学操作——开操作,结果如下:

python+opencv实现文字颜色识别与标定功能_第5张图片

 但是发现了七和九发生了断层现象如果进行矩形标定的话会出现两个矩形,因此又做了一下形态学操作中的——闭操作结果如下:

python+opencv实现文字颜色识别与标定功能_第6张图片

 经过闭操作我们发现七处的裂缝没有了但是九还是有,这个是由于设置的yellow上下阈值导致的。

后面进行矩形标定如下所示:

python+opencv实现文字颜色识别与标定功能_第7张图片

到此这篇关于python+opencv实现文字颜色识别与标定的文章就介绍到这了,更多相关python opencv文字颜色识别内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

你可能感兴趣的