prometheus remote-write解析(三) -- reshard分析

prometheus初始使用min_shards运行,在运行过程中,利用sampleIn/sampleOut等指标计算新的shards,然后更新shards运行。

remote_write中shard的默认配置:

  • min_shards=1;
  • max_shards=1000;

按此配置,实际运行的shards值:

  • 初始=min_shards=1;
  • 有1个Goroutine根据当前的输入输出情况,定时计算新的desired_shards,然后进行reshard,以此动态调整shard数量;

入口

入口在上文讲到的QueueManager:

// Start the queue manager sending samples to the remote storage.
// Does not block.
func (t *QueueManager) Start() {
   ....
    go t.updateShardsLoop()    //计算新的shard
    go t.reshardLoop()        //更新shard
}

更新shard: reshardLoop()

更新shard很简单,stop老的shard,然后start新的shard;

func (t *QueueManager) reshardLoop() {
    defer t.wg.Done()

    for {
        select {
        case numShards := <-t.reshardChan:
            // We start the newShards after we have stopped (the therefore completely
            // flushed) the oldShards, to guarantee we only every deliver samples in
            // order.
            t.shards.stop()
            t.shards.start(numShards)
        case <-t.quit:
            return
        }
    }
}

计算新shard: updateShardsLoop()

计算新shard的过程稍微复杂一些。
核心逻辑在t.calculateDesiredShards():

func (t *QueueManager) updateShardsLoop() {
    defer t.wg.Done()

    ticker := time.NewTicker(shardUpdateDuration)
    defer ticker.Stop()
    for {
        select {
        case <-ticker.C:
            desiredShards := t.calculateDesiredShards()    //核心逻辑在这里
            if !t.shouldReshard(desiredShards) {
                continue
            }
            // Resharding can take some time, and we want this loop
            // to stay close to shardUpdateDuration.
            select {
            case t.reshardChan <- desiredShards:
                level.Info(t.logger).Log("msg", "Remote storage resharding", "from", t.numShards, "to", desiredShards)
                t.numShards = desiredShards
            default:
                level.Info(t.logger).Log("msg", "Currently resharding, skipping.")
            }
        case <-t.quit:
            return
        }
    }
}

1.依据哪些指标计算shards?

  • samplesIn: 输入速率;
  • samplesOut: 输出速率;
  • samplesDropped: 丢弃速率;

这些指标都是ewmaRate类型,使用指标加权平均计算:

//参考:https://www.cnblogs.com/jiangxinyang/p/9705198.html
//越是最近的值,对结果的影响越大
v(t) = β(vt-1) + β*β(vt-2) + β*β*β(vt-3)+.....(β=0.2)

代码实现:

const ewmaWeight          = 0.2
const shardUpdateDuration = 10 * time.Second
samplesDropped:     newEWMARate(ewmaWeight, shardUpdateDuration),
samplesOut:         newEWMARate(ewmaWeight, shardUpdateDuration),
samplesOutDuration: newEWMARate(ewmaWeight, shardUpdateDuration),

func newEWMARate(alpha float64, interval time.Duration) *ewmaRate {
    return &ewmaRate{
        alpha:    alpha,
        interval: interval,
    }
}

// 更新速率的方法
// tick assumes to be called every r.interval.
func (r *ewmaRate) tick() {
    newEvents := atomic.SwapInt64(&r.newEvents, 0)
    instantRate := float64(newEvents) / r.interval.Seconds()    //最新的速率
    r.mutex.Lock()
    defer r.mutex.Unlock()
    if r.init {
        //指数加权平均
        r.lastRate += r.alpha * (instantRate - r.lastRate)   
    } else if newEvents > 0 {
        r.init = true
        r.lastRate = instantRate
    }
}

2.采样何种算法计算shards?
利特尔法则:吞吐量L= λW
prometheus remote-write解析(三) -- reshard分析_第1张图片

举例来讲:

  • 假如我们开1个商店,平均每分钟进店2个客人(λ);
  • 每个客人从进店到出店耗费4分钟(W);
  • 那么我们的商店承载量=2*4=8人;

3.算法公式
直接看代码,calculateDesiredShards()计算desiredShard:

func (t *QueueManager) calculateDesiredShards() int {
    //更新ewma的值
    t.samplesOut.tick()
    t.samplesDropped.tick()
    t.samplesOutDuration.tick()

    // We use the number of incoming samples as a prediction of how much work we
    // will need to do next iteration.  We add to this any pending samples
    // (received - send) so we can catch up with any backlog. We use the average
    // outgoing batch latency to work out how many shards we need.
    var (
        samplesInRate      = t.samplesIn.rate()
        samplesOutRate     = t.samplesOut.rate()
        samplesKeptRatio   = samplesOutRate / (t.samplesDropped.rate() + samplesOutRate)
        samplesOutDuration = t.samplesOutDuration.rate() / float64(time.Second)
        samplesPendingRate = samplesInRate*samplesKeptRatio - samplesOutRate
        highestSent        = t.metrics.highestSentTimestamp.Get()
        highestRecv        = highestTimestamp.Get()
        delay              = highestRecv - highestSent
        samplesPending     = delay * samplesInRate * samplesKeptRatio
    )

    if samplesOutRate <= 0 {
        return t.numShards
    }

    // When behind we will try to catch up on a proporation of samples per tick.
    // This works similarly to an integral accumulator in that pending samples
    // is the result of the error integral.
    const integralGain = 0.1 / float64(shardUpdateDuration/time.Second)

    var (
        timePerSample = samplesOutDuration / samplesOutRate
        desiredShards = timePerSample * (samplesInRate*samplesKeptRatio + integralGain*samplesPending)
    )
    t.metrics.desiredNumShards.Set(desiredShards)
    .....
}

可以看到,最终的计算公式:

desiredShards = timePerSample * (samplesInRate*samplesKeptRatio + integralGain*samplesPending)

其中:

  • timePerSample=samplesOutDuration/samplesOutRate: 每个sample被输出花费的时间;
  • samplesInRate: 输入速率;
  • samplesKeptRatio=sampleOut/(samplesOut+samplesDrop): 输出的成功率;
  • integralGain*samplesPending: 修正值,将pending的数据计算进去;

整个计算过程遵循利特尔法则:承载量=输入流量*单个流量的耗费时间,只是中间加入了一些确保准确的成功率、修正值等。

你可能感兴趣的