# C++实现LeetCode(15.三数之和)

## [LeetCode] 15. 3Sum 三数之和

Given an array S of n integers, are there elements abc in S such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.

Note:

• Elements in a triplet (a,b,c) must be in non-descending order. (ie, a ≤ b ≤ c)
• The solution set must not contain duplicate triplets.

For example, given array S = {-1 0 1 2 -1 -4},

A solution set is:
(-1, 0, 1)
(-1, -1, 2)

```class Solution {
public:
vector> threeSum(vector& nums) {
vector> res;
sort(nums.begin(), nums.end());
if (nums.empty() || nums.back() < 0 || nums.front() > 0) return {};
for (int k = 0; k < (int)nums.size() - 2; ++k) {
if (nums[k] > 0) break;
if (k > 0 && nums[k] == nums[k - 1]) continue;
int target = 0 - nums[k], i = k + 1, j = (int)nums.size() - 1;
while (i < j) {
if (nums[i] + nums[j] == target) {
res.push_back({nums[k], nums[i], nums[j]});
while (i < j && nums[i] == nums[i + 1]) ++i;
while (i < j && nums[j] == nums[j - 1]) --j;
++i; --j;
} else if (nums[i] + nums[j] < target) ++i;
else --j;
}
}
return res;
}
};```

```class Solution {
public:
vector> threeSum(vector& nums) {
set> res;
sort(nums.begin(), nums.end());
if (nums.empty() || nums.back() < 0 || nums.front() > 0) return {};
for (int k = 0; k < (int)nums.size() - 2; ++k) {
if (nums[k] > 0) break;
int target = 0 - nums[k], i = k + 1, j = (int)nums.size() - 1;
while (i < j) {
if (nums[i] + nums[j] == target) {
res.insert({nums[k], nums[i], nums[j]});
while (i < j && nums[i] == nums[i + 1]) ++i;
while (i < j && nums[j] == nums[j - 1]) --j;
++i; --j;
} else if (nums[i] + nums[j] < target) ++i;
else --j;
}
}
return vector>(res.begin(), res.end());
}
};```