机器学习之-skip-gram的负采样

针对前文的skip-gram以及CBOW的算法训练,当面对百万级的文本,就算是隐藏层是检索功能,其计算量也是相当大,而且还会造成冗余计算,这时候对高频词抽样以及负采样就应运而生了。

对高频词抽样

举例,原始文本为“The quick brown fox jumps over the laze dog”,如果我使用大小为2的窗口,那么我们可以得到图中展示的那些训练样本。


机器学习之-skip-gram的负采样_第1张图片
image.png

但是对于“the”这种常用高频单词,这样的处理方式会存在下面两个问题:

  1. 当我们得到成对的单词训练样本时,("fox", "the") 这样的训练样本并不会给我们提供关于“fox”更多的语义信息,因为“the”在每个单词的上下文中几乎都会出现。

  2. 由于在文本中“the”这样的常用词出现概率很大,因此我们将会有大量的(”the“,...)这样的训练样本,而这些样本数量远远超过了我们学习“the”这个词向量所需的训练样本数。

Word2Vec通过“抽样”模式来解决这种高频词问题。它的基本思想如下:对于我们在训练原始文本中遇到的每一个单词,它们都有一定概率被我们从文本中删掉,而这个被删除的概率与单词的频率有关。

如果我们设置窗口大小
image.png

image.png

),并且从我们的文本中删除所有的“the”,那么会有下面的结果:

  1. 由于我们删除了文本中所有的“the”,那么在我们的训练样本中,“the”这个词永远也不会出现在我们的上下文窗口中。

在代码中还有一个参数叫“sample”,这个参数代表一个阈值,默认值为0.001(在gensim包中的Word2Vec类说明中,这个参数默认为0.001,文档中对这个参数的解释为“ threshold for configuring which higher-frequency words are randomly downsampled”)。这个值越小意味着这个单词被保留下来的概率越小(即有越大的概率被我们删除)。


机器学习之-skip-gram的负采样_第2张图片
image.png

机器学习之-skip-gram的负采样_第3张图片
image.png

机器学习之-skip-gram的负采样_第4张图片
image.png

训练一个神经网络意味着要输入训练样本并且不断调整神经元的权重,从而不断提高对目标的准确预测。每当神经网络经过一个训练样本的训练,它的权重就会进行一次调整。

正如我们上面所讨论的,vocabulary的大小决定了我们的Skip-Gram神经网络将会拥有大规模的权重矩阵,所有的这些权重需要通过我们数以亿计的训练样本来进行调整,这是非常消耗计算资源的,并且实际中训练起来会非常慢。

负采样(negative sampling)解决了这个问题,它是用来提高训练速度并且改善所得到词向量的质量的一种方法。不同于原本每个训练样本更新所有的权重,负采样每次让一个训练样本仅仅更新一小部分的权重,这样就会降低梯度下降过程中的计算量。

当我们用训练样本 ( input word: "fox",output word: "quick") 来训练我们的神经网络时,“ fox”和“quick”都是经过one-hot编码的。如果我们的vocabulary大小为10000时,在输出层,我们期望对应“quick”单词的那个神经元结点输出1,其余9999个都应该输出0。在这里,这9999个我们期望输出为0的神经元结点所对应的单词我们称为“negative” word。

当使用负采样时,我们将随机选择一小部分的negative words(比如选5个negative words)来更新对应的权重。我们也会对我们的“positive” word进行权重更新(在我们上面的例子中,这个单词指的是”quick“)。

你可能感兴趣的