像素遍历

当处理图片的像素值时,如变化i=(i/10)*10。没有必要对每一个像素值进行这个操作。可以创建一个表,如果是灰度图像,那么表达大小是256*常数2。之后对每一个像素进行查表即可。

运行时间的计算:

double t = (double)getTickCount();
// do something ...
t = ((double)getTickCount() - t)/getTickFrequency();

在内存中,图像每行的像素存储一般是是连续的。

C的遍历

Mat& ScanImageAndReduceC(Mat& I, const uchar* const table)
{
    // accept only char type matrices
    CV_Assert(I.depth() == CV_8U);
    int channels = I.channels();
    int nRows = I.rows;
    int nCols = I.cols * channels;
    if (I.isContinuous())
    {
        nCols *= nRows;
        nRows = 1;
    }
    int i,j;
    uchar* p;
    for( i = 0; i < nRows; ++i)
    {
        p = I.ptr(i);
        for ( j = 0; j < nCols; ++j)
        {
            p[j] = table[p[j]];
        }
    }
    return I;
}

迭代器方法

Mat& ScanImageAndReduceIterator(Mat& I, const uchar* const table)
{
    // accept only char type matrices
    CV_Assert(I.depth() == CV_8U);
    const int channels = I.channels();
    switch(channels)
    {
    case 1:
        {
            MatIterator_ it, end;
            for( it = I.begin(), end = I.end(); it != end; ++it)
                *it = table[*it];
            break;
        }
    case 3:
        {
            MatIterator_ it, end;
            for( it = I.begin(), end = I.end(); it != end; ++it)
            {
                (*it)[0] = table[(*it)[0]];
                (*it)[1] = table[(*it)[1]];
                (*it)[2] = table[(*it)[2]];
            }
        }
    }
    return I;
}

typedef Vec cv::Vec3b
typedef Vec cv::Vec3d
typedef Vec cv::Vec3f
typedef Vec cv::Vec3i
typedef Vec cv::Vec3s
typedef Vec cv::Vec3w

On-the-fly address calculation with reference returning

Mat& ScanImageAndReduceRandomAccess(Mat& I, const uchar* const table)
{
    // accept only char type matrices
    CV_Assert(I.depth() == CV_8U);
    const int channels = I.channels();
    switch(channels)
    {
    case 1:
        {
            for( int i = 0; i < I.rows; ++i)
                for( int j = 0; j < I.cols; ++j )
                    I.at(i,j) = table[I.at(i,j)];
            break;
        }
    case 3:
        {
         Mat_ _I = I;
         for( int i = 0; i < I.rows; ++i)
            for( int j = 0; j < I.cols; ++j )
               {
                   _I(i,j)[0] = table[_I(i,j)[0]];
                   _I(i,j)[1] = table[_I(i,j)[1]];
                   _I(i,j)[2] = table[_I(i,j)[2]];
            }
         I = _I;
         break;
        }
    }
    return I;
}

很慢,不过要处理少数个数据时候,可以参考。Mat_data type神器呀!

最好的方法

Mat lookUpTable(1, 256, CV_8U);
    uchar* p = lookUpTable.ptr();
    for( int i = 0; i < 256; ++i)
        p[i] = table[i];

LUT(I, lookUpTable, J);

速度最快,因为This is because the OpenCV library is multi-thread enabled via Intel Threaded Building Blocks.
不过牺牲了一些安全性。

你可能感兴趣的