当前位置:首页 > 开发 > 编程语言 > 大数据 > 正文

非mapreduce生成Hfile,然后导入hbase当中

发表于: 2015-03-10   作者:Stark_Summer   来源:转载   浏览:
摘要: 最近一个群友的boss让研究hbase,让hbase的入库速度达到5w+/s,这可愁死了,4台个人电脑组成的集群,多线程入库调了好久,速度也才1w左右,都没有达到理想的那种速度,然后就想到了这种方式,但是网上多是用mapreduce来实现入库,而现在的需求是实时入库,不生成文件了,所以就只能自己用代码实现了,但是网上查了很多资料都没有查到,最后在一个网友的指引下,看了源码,最后找到了生成Hfile

最近一个群友的boss让研究hbase,让hbase的入库速度达到5w+/s,这可愁死了,4台个人电脑组成的集群,多线程入库调了好久,速度也才1w左右,都没有达到理想的那种速度,然后就想到了这种方式,但是网上多是用mapreduce来实现入库,而现在的需求是实时入库,不生成文件了,所以就只能自己用代码实现了,但是网上查了很多资料都没有查到,最后在一个网友的指引下,看了源码,最后找到了生成Hfile的方式,实现了之后,发现单线程入库速度才达到1w4左右,和之前的多线程的全速差不多了,百思不得其解之时,调整了一下代码把列的Byte.toBytes(cols)这个方法调整出来只做一次,速度立马就到3w了,提升非常明显,这是我的电脑上的速度,估计在它的集群上能更快一点吧,下面把代码和大家分享一下。

    String tableName = "taglog";
            byte[] family = Bytes.toBytes("logs");
            //配置文件设置
            Configuration conf = HBaseConfiguration.create();
            conf.set("hbase.master", "192.168.1.133:60000");
            conf.set("hbase.zookeeper.quorum", "192.168.1.135");
            //conf.set("zookeeper.znode.parent", "/hbase");
            conf.set("hbase.metrics.showTableName", "false");
            //conf.set("io.compression.codecs", "org.apache.hadoop.io.compress.SnappyCodec");
            
            String outputdir = "hdfs://hadoop.Master:8020/user/SEA/hfiles/";
            Path dir = new Path(outputdir);
            Path familydir = new Path(outputdir, Bytes.toString(family));
            FileSystem fs = familydir.getFileSystem(conf);
            BloomType bloomType = BloomType.NONE;
            final HFileDataBlockEncoder encoder = NoOpDataBlockEncoder.INSTANCE;
            int blockSize = 64000;
            Configuration tempConf = new Configuration(conf);
            tempConf.set("hbase.metrics.showTableName", "false");
            tempConf.setFloat(HConstants.HFILE_BLOCK_CACHE_SIZE_KEY, 1.0f);
            //实例化HFile的Writer,StoreFile实际上只是HFile的轻量级的封装
            StoreFile.Writer writer = new StoreFile.WriterBuilder(conf, new CacheConfig(tempConf),
                    fs, blockSize)
                    .withOutputDir(familydir)
                    .withCompression(Compression.Algorithm.NONE)
                    .withBloomType(bloomType).withComparator(KeyValue.COMPARATOR)
                    .withDataBlockEncoder(encoder).build();
            long start = System.currentTimeMillis();
            
            DecimalFormat df = new DecimalFormat("0000000");
            
            
            
            KeyValue kv1 = null;
            KeyValue kv2 = null;
            KeyValue kv3 = null;
            KeyValue kv4 = null;
            KeyValue kv5 = null;
            KeyValue kv6 = null;
            KeyValue kv7 = null;
            KeyValue kv8 = null;
            
            //这个是耗时操作,只进行一次
            byte[] cn = Bytes.toBytes("cn");
            byte[] dt = Bytes.toBytes("dt");
            byte[] ic = Bytes.toBytes("ic");
            byte[] ifs = Bytes.toBytes("if");
            byte[] ip = Bytes.toBytes("ip");
            byte[] le = Bytes.toBytes("le");
            byte[] mn = Bytes.toBytes("mn");
            byte[] pi = Bytes.toBytes("pi");
            
            int maxLength = 3000000;
            for(int i=0;i<maxLength;i++){
                String currentTime = ""+System.currentTimeMillis() + df.format(i);
                long current = System.currentTimeMillis();
                 //rowkey和列都要按照字典序的方式顺序写入,否则会报错的
                 kv1 = new KeyValue(Bytes.toBytes(currentTime), 
                         family, cn,current,KeyValue.Type.Put,Bytes.toBytes("3"));
                
                 kv2 = new KeyValue(Bytes.toBytes(currentTime), 
                         family, dt,current,KeyValue.Type.Put,Bytes.toBytes("6"));
                
                 kv3 = new KeyValue(Bytes.toBytes(currentTime), 
                         family, ic,current,KeyValue.Type.Put,Bytes.toBytes("8"));
                
                 kv4 = new KeyValue(Bytes.toBytes(currentTime), 
                         family, ifs,current,KeyValue.Type.Put,Bytes.toBytes("7"));
                
                 kv5 = new KeyValue(Bytes.toBytes(currentTime), 
                         family, ip,current,KeyValue.Type.Put,Bytes.toBytes("4"));
                
                 kv6 = new KeyValue(Bytes.toBytes(currentTime), 
                         family, le,current,KeyValue.Type.Put,Bytes.toBytes("2"));
                
                 kv7 = new KeyValue(Bytes.toBytes(currentTime), 
                         family, mn,current,KeyValue.Type.Put,Bytes.toBytes("5"));
                
                 kv8 = new KeyValue(Bytes.toBytes(currentTime), 
                         family,pi,current,KeyValue.Type.Put,Bytes.toBytes("1"));
                
                writer.append(kv1);
                writer.append(kv2);
                writer.append(kv3);
                writer.append(kv4);
                writer.append(kv5);
                writer.append(kv6);
                writer.append(kv7);
                writer.append(kv8);
            }
            
            
            writer.close();
            
            //把生成的HFile导入到hbase当中
            HTable table = new HTable(conf,tableName);
            LoadIncrementalHFiles loader = new LoadIncrementalHFiles(conf);
            loader.doBulkLoad(dir, table);


  


  最后再附上查看hfile的方式,查询正确的hfile和自己生成的hfile,方便查找问题。
  hbase org.apache.hadoop.hbase.io.hfile.HFile -p -f hdfs://hadoop.Master:8020/user/SEA/hfiles/logs/51aa97b2a25446f89d5c870af92c9fc1

非mapreduce生成Hfile,然后导入hbase当中

  • 0

    开心

    开心

  • 0

    板砖

    板砖

  • 0

    感动

    感动

  • 0

    有用

    有用

  • 0

    疑问

    疑问

  • 0

    难过

    难过

  • 0

    无聊

    无聊

  • 0

    震惊

    震惊

我来说两句
评论内容:
验  证  码:
 
(网友评论仅供其表达个人看法,并不表明本站同意其观点或证实其描述。)
评论列表
已有 0 条评论(查看更多评论)
编辑推荐
对以下手机流量信息进行模拟导入,放置到HDFS文件系统input文件夹下 1363157985066 13726230503 00-
对以下手机流量信息进行模拟导入,放置到HDFS文件系统input文件夹下 1363157985066 13726230503 00-
HBase put数据时会先将数据写入内存,其内存结构是一个ConcurrentSkipListMap,其Comparator是KVCom
1.HFile详解 HFile文件分为以下六大部分 序号 名称 描述 1 数据块 由多个block(块)组成,每个块的格
1.HFile详解 HFile文件分为以下六大部分 序号 名称 描述 1 数据块 由多个block(块)组成,每个块的格
1. 首先看看HBase中存储的文件内容 执行如下命令添加测试数据: create 'table3', 'colfam1', { SPL
1. 首先看看HBase中存储的文件内容 执行如下命令添加测试数据: create 'table3', 'colfam1', { SPL
1. 首先看看HBase中存储的文件内容 执行如下命令添加测试数据: create 'table3', 'colfam1', { SPL
主要看Roger的文档,这里作为文档的补充 HFile的格式-HFile的基本结构 Trailer通过指针找到Meta ind
这两天看了一下HBase的基本操作,然后又重温了下Hadoop的MapReduce的基本操作(虽然之前看的也是一般
版权所有 IT知识库 CopyRight © 2009-2015 IT知识库 IT610.com , All Rights Reserved. 京ICP备09083238号