当前位置:首页 > 开发 > 数据库 > 正文

一个 sql优化 ([精华] 一个查询优化的分析调整全过程!很值得一看 )

发表于: 2014-01-03   作者:cwqcwqmax9   来源:转载   浏览:
sql
摘要: 见   http://www.itpub.net/forum.php?mod=viewthread&tid=239011 Web翻页优化实例 提交时间: 2004-6-18 15:37:49      回复    发消息  环境: Linux ve
见   http://www.itpub.net/forum.php?mod=viewthread&tid=239011




Web翻页优化实例
提交时间: 2004-6-18 15:37:49      回复    发消息 


环境:
Linux version 2.4.20-8custom (root@web2) (gcc version 3.2.2 20030222 (Red Hat Linux 3.2.2-5)) #3 SMP Thu Jun 5 22:03:36 CST 2003
Mem:  2113466368 
Swap: 4194881536 
CPU:两个超线程的Intel(R) Xeon(TM) CPU 2.40GHz
  
优化前语句在mysql里面查询15秒左右出来,转移到oracle后进行在不调整索引和语句的情况下执行时间大概是4-5秒,调整后执行时间小于0.5秒。
 
翻页语句:
SELECT * FROM  (SELECT T1.*, rownum as linenum FROM  (
SELECT /*+ index(a ind_old)*/
a.category FROM auction_auctions a WHERE a.category =' 170101 ' AND a.closed='0' AND ends > sysdate AND (a.approve_status>=0)  ORDER BY a.ends) T1  WHERE rownum < 18681) WHERE linenum >= 18641
  
被查询的表:auction_auctions(产品表)
表结构:
SQL> desc auction_auctions;                         
   Name                                      Null?    Type
   ----------------------------------------- -------- ----------------------------
  ID                                        NOT NULL VARCHAR2(32)
   USERNAME                                           VARCHAR2(32)
   TITLE                                              CLOB
   GMT_MODIFIED                              NOT NULL DATE
   STARTS                                    NOT NULL DATE
   DESCRIPTION                                        CLOB
   PICT_URL                                           CLOB
   CATEGORY                                  NOT NULL VARCHAR2(11)
   MINIMUM_BID                                        NUMBER
   RESERVE_PRICE                                      NUMBER
   BUY_NOW                                            NUMBER
   AUCTION_TYPE                                       CHAR(1)
   DURATION                                           VARCHAR2(7)
   INCREMENTNUM                              NOT NULL NUMBER
   CITY                                               VARCHAR2(30)
   PROV                                               VARCHAR2(20)
   LOCATION                                           VARCHAR2(40)
   LOCATION_ZIP                                       VARCHAR2(6)
   SHIPPING                                           CHAR(1)
   PAYMENT                                            CLOB
   INTERNATIONAL                                      CHAR(1)
   ENDS                                      NOT NULL DATE
   CURRENT_BID                                        NUMBER
   CLOSED                                             CHAR(2)
   PHOTO_UPLOADED                                     CHAR(1)
   QUANTITY                                           NUMBER(11)
   STORY                                              CLOB
   HAVE_INVOICE                              NOT NULL NUMBER(1)
   HAVE_GUARANTEE                            NOT NULL NUMBER(1)
   STUFF_STATUS                              NOT NULL NUMBER(1)
   APPROVE_STATUS                            NOT NULL NUMBER(1)
   OLD_STARTS                                NOT NULL DATE
   ZOO                                                VARCHAR2(10)
   PROMOTED_STATUS                           NOT NULL NUMBER(1)
   REPOST_TYPE                                        CHAR(1)
   REPOST_TIMES                              NOT NULL NUMBER(4)
   SECURE_TRADE_AGREE                        NOT NULL NUMBER(1)
   SECURE_TRADE_TRANSACTION_FEE                       VARCHAR2(16)
   SECURE_TRADE_ORDINARY_POST_FEE                     NUMBER
   SECURE_TRADE_FAST_POST_FEE                         NUMBER

表记录数及大小
SQL> select count(*) from auction_auctions;
  
    COUNT(*)
----------
537351
  
SQL> select segment_name,bytes,blocks from user_segments where segment_name ='AUCTION_AUCTIONS';
  
SEGMENT_NAME          BYTES     BLOCKS
AUCTION_AUCTIONS      1059061760     129280
  
表上原有的索引
create index ind_old on auction_auctions(closed,approve_status,category,ends) tablespace tbsindex compress 2;
  
SQL> select segment_name,bytes,blocks from user_segments where segment_name = 'IND_OLD';
  
SEGMENT_NAME           BYTES     BLOCKS
IND_OLD                   20971520       2560
表和索引都已经分析过,我们来看一下sql执行的费用
SQL> set autotrace trace;
SQL> SELECT * FROM  (SELECT T1.*, rownum as linenum FROM  (SELECT a.* FROM auction_auctions a WHERE a.category like '18%' AND a.closed='0' AND ends  > sysdate AND (a.approve_status>=0)  ORDER BY a.ends) T1  WHERE rownum <18681) WHERE linenum >= 18641;
  
40 rows selected.
  
Execution Plan
----------------------------------------------------------
     0      SELECT STATEMENT Optimizer=CHOOSE (Cost=19152 Card=18347 Byt
            es=190698718)
  
     1    0   VIEW (Cost=19152 Card=18347 Bytes=190698718)
     2    1     COUNT (STOPKEY)
     3    2       VIEW (Cost=19152 Card=18347 Bytes=190460207)
     4    3         TABLE ACCESS (BY INDEX ROWID) OF 'AUCTION_AUCTIONS'
            (Cost=19152 Card=18347 Bytes=20860539)
  
     5    4           INDEX (RANGE SCAN) OF 'IND_OLD' (NON-UNIQUE) (Cost
            =810 Card=186003)
  
Statistics
----------------------------------------------------------
            0  recursive calls
            0  db block gets
        19437  consistent gets
        18262  physical reads
            0  redo size
       114300  bytes sent via SQL*Net to client
        56356  bytes received via SQL*Net from client
          435  SQL*Net roundtrips to/from client
            0  sorts (memory)
            0  sorts (disk)
           40  rows processed
  
我们可以看到这条sql语句通过索引范围扫描找到最里面的结果集,然后通过两个view操作最后得出数据。其中18502  consistent gets,17901  physical reads

我们来看一下这个索引建的到底合不合理,先看下各个查寻列的distinct值
select count(distinct ends) from auction_auctions;
  
COUNT(DISTINCTENDS)
-------------------
               338965
  
SQL> select count(distinct category) from auction_auctions;
  
COUNT(DISTINCTCATEGORY)
-----------------------
                     1148
  
SQL> select count(distinct closed) from auction_auctions;
  
COUNT(DISTINCTCLOSED)
---------------------
                      2
SQL> select count(distinct approve_status) from auction_auctions;
  
COUNT(DISTINCTAPPROVE_STATUS)
-----------------------------
                              5
  
页索引里列平均存储长度
SQL> select avg(vsize(ends)) from auction_auctions;
  
AVG(VSIZE(ENDS))
----------------
                 7
  
SQL> select avg(vsize(closed)) from auction_auctions;
  
AVG(VSIZE(CLOSED))
------------------
                   2
  
SQL> select avg(vsize(category)) from auction_auctions;
  
AVG(VSIZE(CATEGORY))
--------------------
            5.52313106
  
SQL> select avg(vsize(approve_status)) from auction_auctions;
  
AVG(VSIZE(APPROVE_STATUS))
--------------------------
                  1.67639401

我们来估算一下各种组合索引的大小,可以看到closed,approve_status,category都是相对较低集势的列(重复值较多),下面我们来大概计算下各种页索引需要的空间
 
column               distinct num        column len
ends                  338965              7 
category               1148                5.5
closed                 2                   2 
approve_status          5                   1.7 
  
index1: (ends,closed,category,approve_status) compress 2
ends:distinct number---338965
closed: distinct number---2
index size=338965*2*(9+2)+ 537351*(1.7+5.5+6)=14603998
  
index2: (closed,category,ends,approve_status)
closed: distinct number---2
category: distinct number---1148
index size=2*1148*(2+5.5)+537351*(7+1.7+6)=7916279
  
index3: (closed,approve_status,category,ends)
closed: distinct number---2
approve_status: distinct number―5
index size=2*5*(2+1.7)+537351*(7+5.5+6)=9941030
  
结果出来了,index2: (closed,category,ends,approve_status)的索引最小

我们再来看一下语句
SELECT * FROM  (SELECT T1.*, rownum as linenum FROM  (SELECT a.* FROM auction_auctions a WHERE a.category like '18%' AND a.closed='0' AND ends  > sysdate AND (a.approve_status>=0)  ORDER BY a.ends) T1  WHERE rownum <18681) WHERE linenum >= 18641;
可以看出这个sql语句有很大优化余地,首先最里面的结果集SELECT a.* FROM auction_auctions a WHERE a.category like '18%' AND a.closed='0' AND ends  > sysdate AND (a.approve_status>=0)  ORDER BY a.ends,这里的话会走index range scan,然后table scan by rowid,这样的话如果符合条件的数据多的话相当耗资源,我们可以改写成
SELECT a.rowid FROM auction_auctions a WHERE a.category like '18%' AND a.closed='0' AND ends  > sysdate AND (a.approve_status>=0)  ORDER BY a.ends
这样的话最里面的结果集只需要index fast full scan就可以完成了,再改写一下得出以下语句
 
select * from auction_auctions where rowid in (SELECT rid FROM  (
SELECT T1.rowid rid, rownum as linenum FROM  
(SELECT a.rowid FROM auction_auctions a WHERE a.category like '18%' AND a.closed='0' AND ends > sysdate AND 
(a.approve_status>=0)  ORDER BY a.ends) T1  WHERE rownum < 18681) WHERE linenum >= 18641)
  
下面我们来测试一下这个索引的查询开销
 
select * from auction_auctions where rowid in (SELECT rid FROM  (
SELECT T1.rowid rid, rownum as linenum FROM  
(SELECT a.rowid FROM auction_auctions a WHERE a.category like '18%' AND a.closed='0' AND ends > sysdate AND 
(a.approve_status>=0)  ORDER BY a.closed,a.ends) T1  WHERE rownum < 18681) WHERE linenum >= 18641)
Execution Plan
----------------------------------------------------------
     0      SELECT STATEMENT Optimizer=CHOOSE (Cost=18698 Card=18344 Byt
            es=21224008)
  
     1    0   NESTED LOOPS (Cost=18698 Card=18344 Bytes=21224008)
     2    1     VIEW (Cost=264 Card=18344 Bytes=366880)
     3    2       SORT (UNIQUE)
     4    3         COUNT (STOPKEY)
     5    4           VIEW (Cost=264 Card=18344 Bytes=128408)
     6    5             SORT (ORDER BY STOPKEY) (Cost=264 Card=18344 Byt
            es=440256)
  
     7    6               INDEX (FAST FULL SCAN) OF 'IDX_AUCTION_BROWSE'
             (NON-UNIQUE) (Cost=159 Card=18344 Bytes=440256)
  
     8    1     TABLE ACCESS (BY USER ROWID) OF 'AUCTION_AUCTIONS' (Cost
            =1 Card=1 Bytes=1137)
  
Statistics
----------------------------------------------------------
            0  recursive calls
            0  db block gets
         2080  consistent gets
         1516  physical reads
            0  redo size
       114840  bytes sent via SQL*Net to client
        56779  bytes received via SQL*Net from client
          438  SQL*Net roundtrips to/from client
            2  sorts (memory)
            0  sorts (disk)
           40  rows processed
  
可以看到consistent gets从19437降到2080,physical reads从18262降到1516,查询时间也丛4秒左右下降到0。5秒,可以来说这次sql调整取得了预期的效果。

又修改了一下语句,
 
SQL> select * from auction_auctions where rowid in 
    2  (SELECT rid FROM  (                                              
    3  SELECT T1.rowid rid, rownum as linenum FROM                                                                 
    4  (SELECT a.rowid FROM auction_auctions a 
    5     WHERE a.category like '18%' AND a.closed='0' AND ends > sysdate AND 
a.approve_status>=0
    6    7  ORDER BY a.closed,a.category,a.ends) T1  
    8  WHERE rownum < 18600) WHERE linenum >= 18560)    ;
  
40 rows selected.
  
Execution Plan
----------------------------------------------------------
     0      SELECT STATEMENT Optimizer=CHOOSE (Cost=17912 Card=17604 Byt
            es=20367828)
  
     1    0   NESTED LOOPS (Cost=17912 Card=17604 Bytes=20367828)
     2    1     VIEW (Cost=221 Card=17604 Bytes=352080)
     3    2       SORT (UNIQUE)
     4    3         COUNT (STOPKEY)
     5    4           VIEW (Cost=221 Card=17604 Bytes=123228)
     6    5             INDEX (RANGE SCAN) OF 'IDX_AUCTION_BROWSE' (NON-
            UNIQUE) (Cost=221 Card=17604 Bytes=422496)
  
     7    1     TABLE ACCESS (BY USER ROWID) OF 'AUCTION_AUCTIONS' (Cost
            =1 Card=1 Bytes=1137)
  
Statistics
----------------------------------------------------------
            0  recursive calls
            0  db block gets
          550  consistent gets
           14  physical reads
            0  redo size
       117106  bytes sent via SQL*Net to client
        56497  bytes received via SQL*Net from client
          436  SQL*Net roundtrips to/from client
            1  sorts (memory)
            0  sorts (disk)
           40  rows processed
  
在order by里加上索引前导列,消除了
    6    5             SORT (ORDER BY STOPKEY) (Cost=264 Card=18344 Byt
            es=440256)
,把consistent gets从2080降到550



一个 sql优化 ([精华] 一个查询优化的分析调整全过程!很值得一看 )

  • 0

    开心

    开心

  • 0

    板砖

    板砖

  • 0

    感动

    感动

  • 0

    有用

    有用

  • 0

    疑问

    疑问

  • 0

    难过

    难过

  • 0

    无聊

    无聊

  • 0

    震惊

    震惊

编辑推荐
很长时间没有搞SQL了,最近又回归原始,有一个优化的经验和大家分享下。 看下面一个查询,这是查询学
查询处理及优化是关系数据库得以流行的根本原因,也是关系数据库系统最核心的技术之一。SQLite的查
sql语句优化 性能不理想的系统中除了一部分是因为应用程序的负载确实超过了服务器的实际处理能力外,
很长时间没有搞SQL了,最近又回归原始,有一个优化的经验和大家分享下。 看下面一个查询,这是查询
最近遇到一个超超超烂的SQL,由于SQL涉及某某税务局的数据,表名字是经过处理的。 原始SQL如下: se
子查询是强有力的工具,它可以书写许多表达式和许多复杂的查询。有很多不同类型的子查询和很多使用
使用mysql缓存 转换不确定性函数:所谓不确定性函数是指函数的返回值不固定如CURDATE(),Now(),Uuid(
实验案例一:比较不同查询语句使用索引的情况 在 Adventrueworks 数据库的 production.workorder 表
作为一名数据库管理维护人员。无法避免的问题就是,当数据库中的数据累计到一定规模时,必然会出现
SELECT A.name , B.name , C.name , D.name FROM checks A INNER JOIN vendors BON A.vendors_id =
版权所有 IT知识库 CopyRight © 2009-2015 IT知识库 IT610.com , All Rights Reserved. 京ICP备09083238号