当前位置:首页 > 开发 > 开源软件 > 正文

【Spark七十二】Spark的日志配置

发表于: 2015-02-20   作者:bit1129   来源:转载   浏览:
摘要: 在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console   在Spark的conf目录下,把log4j.properties.template修改为log4j.p

在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console

 

在Spark的conf目录下,把log4j.properties.template修改为log4j.properties,原来的内容如下:

 

log4j.rootCategory=WARN, console
log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.target=System.err
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{1}: %m%n

# Settings to quiet third party logs that are too verbose
log4j.logger.org.eclipse.jetty=WARN
log4j.logger.org.eclipse.jetty.util.component.AbstractLifeCycle=ERROR
log4j.logger.org.apache.spark.repl.SparkIMain$exprTyper=INFO
log4j.logger.org.apache.spark.repl.SparkILoop$SparkILoopInterpreter=INFO

把log4j.rootCategory=INFO, console改为log4j.rootCategory=WARN, console即可抑制Spark把INFO级别的日志打到控制台上。如果要显示全面的信息,则把INFO改为DEBUG。

 

 

如果希望一方面把代码中的println打印到控制台,另一方面又保留Spark Streaming本身输出的日志,可以将它输出到日志文件中

 

 

log4j.rootCategory=INFO, console,FILE
log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.target=System.err
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{1}: %m%n

# Settings to quiet third party logs that are too verbose
log4j.logger.org.eclipse.jetty=WARN
log4j.logger.org.eclipse.jetty.util.component.AbstractLifeCycle=ERROR
log4j.logger.org.apache.spark.repl.SparkIMain$exprTyper=INFO
log4j.logger.org.apache.spark.repl.SparkILoop$SparkILoopInterpreter=INFO

log4j.appender.FILE=org.apache.log4j.DailyRollingFileAppender
log4j.appender.FILE.Threshold=DEBUG
log4j.appender.FILE.file=/home/hadoop/spark.log
log4j.appender.FILE.DatePattern='.'yyyy-MM-dd
log4j.appender.FILE.layout=org.apache.log4j.PatternLayout
log4j.appender.FILE.layout.ConversionPattern=[%-5p] [%d{yyyy-MM-dd HH:mm:ss}] [%C{1}:%M:%L] %m%n
# spark
log4j.logger.org.apache.spark=INFO

 

上面的操作,spark的日志一方面打印到控制台,一方面写入到/home/hadoop/spark.log中了,这是日志的继承特性,后面再来改进,目前把log4j.rootCategory=INFO, console,FILE改为log4j.rootCategory=INFO, FILE即可

 

 

 

【Spark七十二】Spark的日志配置

  • 0

    开心

    开心

  • 0

    板砖

    板砖

  • 0

    感动

    感动

  • 0

    有用

    有用

  • 0

    疑问

    疑问

  • 0

    难过

    难过

  • 0

    无聊

    无聊

  • 0

    震惊

    震惊

编辑推荐
1 spark
环境: Hadoop版本:Apache Hadoop2.7.1 Spark版本:Apache Spark1.4.1 核心代码: 测试数据: Java
日志信息如下所示: 1.1.1.1 - - [21/Jul/2014:10:00:00 -0800] "GET /majihua/article/284234 HTTP
Apache Spark1.1.0部署与开发环境搭建   Spark是Apache公司推出的一种基于Hadoop Distributed Fil
从MapReduce的兴起,就带来一种思路,就是希望通过大量廉价的机器来处理以前需要耗费昂贵资源的海量
前提安装 hadoop ,JDK 环境 下载地址 scala: http://www.scala-lang.org/download/2.11.6.html 解
从MapReduce的兴起,就带来一种思路,就是希望通过大量廉价的机器来处理以前需要耗费昂贵资源的海量
在用控制台学习hive和spark的时候,总是打印出来的各种日志烦得不行(对我而言)。所以就想把着写我
在前面几篇博客里,介绍了Spark的伪分布式安装,以及使用Spark Shell进行交互式操作,本篇博客主要
在前面几篇博客里,介绍了Spark的伪分布式安装,以及使用Spark Shell进行交互式操作,本篇博客主要
注意:1.目录hdfs://hadoop1:9000/spark/logs是需要自己先创建的,否则会提示无法找到目录。2.只有
版权所有 IT知识库 CopyRight © 2009-2015 IT知识库 IT610.com , All Rights Reserved. 京ICP备09083238号